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PCS was used on small polystyrene spheres of radius (53.5 ± 2)nm in a water solution, to measure
the sphere’s radius experimentally. A He-Ne laser was used and shone through a vial containing the
spheres. A PMT was at an angle of 90o to catch light scattered off of the spheres. Due to the small
size of the spheres when compared to the wavelength generated by the He-Ne laser (632.58 nm),
Rayleigh Scattering was used. A computer program recorded the intensity values from the PMT
and saved them for later review. Autocorrelation was used on this stochastic data set to relate it to
the underlying mechanism. After fitting an exponential to multiple trails of varying concentration,
an average error of 1.8% was found with a minimum error of 0.5% and a maximum error of 3.1%.
No measured values were outside one standard deviation from the known value of the spheres.

INTRODUCTION

Brownian motion is used to describe the random move-
ments of small particles in liquids or gasses. This random
motion was first observed by its namesake Brown in 1827.
He was observing particles of pollen grains in water. This
motion was concluded to be random as Brown had trou-
ble figuring out the underlying mechanism driving this
movement.

As with many things, Einstein helped figure out this
problem. The idea of molecules and their building blocks,
atoms, were not well understood. In 1905 Einstein pub-
lished a paper on Brownian motion and showed evidence
that the pollen was being pushed by water molecules.
This was the cause of the random movement, collisions
off of water molecules.

The random walk motion is seen in Fig. 1. The dis-
tance from the center of the immersed molecule to where
the molecules interact with each other is called the hydro-
dynamic radius. This is an important distinction because
the actual radius of a molecule or atom isn’t ”touched”1,
what is ”touched” is the radius where water can interact
and repel the molecule or atom.

A laser can be used as in Fig. 2 to measure the size of
the immersed molecules or atoms in our solutions. Those
caught in the path of the laser reflect its intensity. As
the particles move in and out of the path of the laser,
the laser’s reflected intensity will fall and rise. These
fluctuations are a time series which can be measured and
correlated to their diffusion into and out of the laser’s
path.

This whole process is an already well-defined study call

1 There are many ways one could describe the moment when two
atoms are considered touching. This is obvious as nuclei in ev-
eryday life stay well apart from each other, less in extreme con-
ditions not conducive to human life; therefore, we need other
definitions of touching. Here the radius of touch is simply the
edge of interaction for water molecules.

FIG. 1: The immersed molecule - blue - is seen walking along
a random path caused by the interactions with the water
molecules - black.

PCS - Photon Correlation Spectroscopy2. The scatter-
ing from these small particles was described in a paper
by Rayleigh in 1871 and is referred to as Rayleigh scat-
tering, but large particle scattering is described by Mie
scattering. PCS uses Raleigh scattering for simplifica-
tion and the diffusion from Brownian motion to find the
hydrodynamic radius.

THEORY

Finding the value of q

As seen in Fig. 3, the wavefront of light from the
laser approaches the test chamber with wave vector ~Ki

2 The first name, now outdated in some circles, is Quasi-elastic
light scattering - QELS.
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FIG. 2: The section that the laser scatters off of is shown
in red. The immersed molecule - blue - can be seen making
its normal Brownian motion into and out of the laser’s path.
This is the diffusion that Einstein described.

FIG. 3: The laser lights path can be seen as the wavefront
approaches our sample and scatters at our angle of 90o. This
is then superimposed into the imaginary triangle to determine
the two vectors difference q.

and, after the scattering event, leaves the test chamber
with wave vector ~Kf . These two wave vectors can be
approximated to have the same wave vector magnitude
as little energy is left with the particles. We can use the
definition of wave vectors to relate the magnitude to the
wavelength λ and the refractive index n as seen in

| ~Kf | = | ~Ki| =
2πn

λ
.

Since the scattered light is always measured at a fixed
angle of 90o we can imagine a right triangle with legs
of ~Kf & ~Ki as shown in Fig. ??. This triangle would

have a hypotenuse ~q whose magnitude q would be the
magnitude of the difference between the wave vectors.
Using the Pythagorean theorem, we find that

|~q| =
√

2| ~Ki| =
2
√

2πn

λ
= q.

Correlation

A time series function can be made up of random noise
or more hopefully, useful data. Autocorrelation is done
by comparing a point of the time series with another
point at some time τ away. If the time series consisted
of only random noise, then it would be obvious that any-
one point compared to any other will also be random in
their correlation. If however, the data had an underlying
mechanism for how the time series evolved, there would
be a pattern in how two points in time were related, see
Fig. 5. This pattern turns into random noise at larger
values of τ , which makes conceptual sense as the further
in time two points are, the less they weigh on each other’s
outcome.

This decay of the two points’ correlation asymptotes to
one as time increases as seen in Fig. 5. This is because no
past data in the time series is completely useless, just less
relevant to new data. This relation is drawn on a graph
called a correlogram and shows how correlation decreases
with time. Mathematically this relation is

C(τ) =< I(0)I(τ) >,

where the brackets indicate a time average and I is our
intensity function which was experimentally measured.
Normalizing this function gives

Cn(τ) =
< I(0)I(τ) >

< I(0) >2
.

Scattering

Consider a probability density Ψ(~r, t) which is the
probability of a particle moving through the laser light
due to fluctuations of ~r at thermal equilibrium. It follows
then that the spatial diffusion propertiesD can be related
to the temporal fluctuations by the diffusion equation

∂Ψ(~r, t)

∂t
= D∇2Ψ(~r, t). (1)

This equation parallels the time-dependent
Schrodinger equation very well. This makes sense
as both are relating temporal fluctuations with spatial
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fluctuations but at different proportions. Solving Eq.
(1) gives the needed first order solution

∂Ψ∗(~q, t)

∂t
= Dq2Ψ∗(~q, t)

Ψ∗(~q, t) = e−Dq2t, (2)

where Ψ∗(~q, t) is the 3D spatial Fourier transform of
Ψ(~r, t) such that it is also equal to the ensemble 3 av-
erage seen below as

Ψ∗(~q, t) =

∫
V

Ψ(~r, t)eiq~r(t)d~r =< eiq~r(t) > .

Eq. (2) is used with the Siegert relationship to re-
late our data to the normalized intensity function we
measure[3],

Cn(τ) = 1 + e−2Dq2t.

Solving for the hydrodynamic radius R

Once a normalized correlogram is made, an exponen-
tial fit can be made to it. This fit will return a value
for the exponent seen in Eq. (2). We don’t want the
whole 2Dq2 from the fit F . We are looking for the hydro-
dynamic radius, whose measurement has not been men-
tioned yet.

The diffusion D for this particular application was
found by Einstein in 1905[2].

D =
kBT

3πηd
. (3)

Here kB is the Boltzmann constant, T is the tempera-
ture in Kelvin, η is the viscosity of the solvent, and d is
twice the hydrodynamic radius.

Substituting what we know as D and what was earlier
shown to be q into fit F gives

F = 2Dq2

F = 2
kBT

3πηd

(
2
√

2πn

λ

)2

.

3 This is a very difficult average to explain in a meaningful way
shortly. Should one want to learn more about this special type
of averaging for stochastic processes I recommend Prof. Gabriel
Popescu’s Spring 2018 class ECE 564 Modern Light Microscopy.
[1]

We can solve for our diameter d which readily yields
our hydrodynamic radius R as

R =
8

3

(
kBTn

2π

ηλ2F

)
. (4)

PROCEDURE

A He-Ne laser is used with a PMT. A test chamber was
also provided whose purpose is to prevent unwanted light
from entering the aperture to the PMT. This test cham-
ber was filled with Decahydronaphthalene; the choice of
this specific chemical is essential as it has a refractive in-
dex near glass. Sodium Azide is also added to the test
chamber to avoid scum buildup which could impede the
light of the laser from reaching our sample.

The sample prep begins with an empty glass vial. This
vial is filled with distilled water and then a known size
of polystyrene sphere solution - (53.5 ± 2)nm in radius
- is added via a single drop. The exact concentration of
the polystyrene spheres in this test solution is not known.
This vial is capped off to avoid spillage, mixed with the
thermolyne, and wiped of fingerprints. This step is cru-
cial to avoid bad data as fingerprints could cause the
laser light to be obstructed and throw off intensity mea-
surements. The sample is placed into the test chamber,
and then the test chamber is covered from above to avoid
stray light.

The laser is mounted on a metal guide rail which is
used to stabilize the beam path. A small aperture on the
side of the test chamber allows the beam to enter, pass
through our sample and scatter off of it. The scattered
light goes off in many directions, but our PMT was fixed
at 90o. To help protect the PMT from accidents, there is
a filter placed in front of it that allows only a fraction of
the total light hitting it to pass through. After that filter
is another filter which only allowed 633 nm light through.
The positioning of all the instruments are shown in Fig
3.

The last step was to pump the Decahydronaphthalene
with a BIC BI-FC 1070 pump so that the possibilities of
air bubbles in solution were low. These could change the
direction of light and could potentially throw off intensity
measurements. After the pump ran for 15 minutes, it was
turned off, and the trail was ready to be ran. This was
done with the program BIC Dynamic Light Scattering
software which read and graphed the intensity as kilo-
counts of photons per period - 100ms. The data collection
device took two constant minutes of data.

To up the concentration, the instruments were all
turned off. The PMT was protected from light by closing
its filter to allow no light through. The vial was pulled
out of the test chamber and cleaned. Another drop of
polystyrene sphere solution was added and remixed with
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FIG. 4: The seemingly random data is plotted for all trails.
As concentration increases so does the kilo counts per sample
which makes sense.

FIG. 5: A semi-log plot of the normalized intensity vs. Time
for all the trails. The exponential fits are lines while data
points are hollow triangles.

thermolyne. All the previous steps were repeated until
ten drops were added to the vial, a 10x concentration
increase.

RESULTS & ANALYSIS

The seemingly random data was taken and was then
autocorrelated. Show in Fig. 4 is the untouched data,
but after autocorrelation, we see a large change, see Fig.
5. What may not be intuitive is that the spread of a data
set in Fig. 4 weighs more to its normalization than the
total counts. See Fig. 5 for how one and two drops follow
the same path, and in Fig. 4 they have the same spread
but different counts.

We can now fit exponentials to each of the concentra-
tion runs. Using the results from this fit and Eq. (4)
we can form Table I which shows the experimental value,
the known value of the polystyrene spheres - (53.5 ± 2)
nm, and the percent difference.

The measurements are low and all well within the one

FIG. 6: A simple look to see how as concentration changes
so does the error. The theory put forward does not take into
account multiple scattering

TABLE I: Tabulation of the individual data points and their
values for Fig. 6

Drops Measured (nm) Expected Percent difference

1 54.0

53.5 ± 2 nm

0.9

2 54.5 1.8

3 54.4 1.7

4 54.5 1.8

5 55.0 2.8

6 55.2 3.1

8 53.8 0.5

10 54.6 2.1

standard deviation - deviation. The error from the per-
cent difference can also be graphed to see how error in-
creases with concentration, see Fig. 6. This is not as
rigorous as the rest of the experiment however due to the
definition of a drop, which is a very imprecise way to de-
scribe a volume. This should provide a general idea of a
trend should it be better tested in the future.

A unique measurement was taken at eight drops. This
measurement breaks the previous upwards trend dramat-
ically. This could be explained by a complete theory or
could be random variance as at these small error differ-
ences dust in solution can make a difference.

The mechanism that is causing this inflation of error is
most likely multiple scatterings off of each other particle.
As concentration rises the chance that a scattered beam
of light will hit another particle increases. The current
theory does not account for this self-scattering and would
need to be corrected to test concentration’s effect.

CONCLUSION

PCS can offer an excellent idea of the size of a solute in
a solvent on some conditions. Concentration has a sub-
stantial effect on PCS but at low concentrations can be
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ignored. Scaling of the theory is needed to include cases
of self-scattering between particles. For the cases tested
in this experiment the maximum percent error seen was
3.1% and the lowest was 0.5%. The average error was
1.8%. This is an excellent approximation considering
the time needed for sample prep which was around one
minute. Testing took another 17 minutes, but this was
time in which other work could be done, and so a solu-
tion for testing product in an industry setting this does
well.
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